Kaplan Scaling Law vs Chinchilla Optimal

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
%matplotlib inline
def LN(n):
    return (8.8*(10**13)/n)**0.076

def LD(d):
    return (5.4*(10**13)/d)**0.095

def ld(l):
    return 5.4*(10**13)/(l**(1/0.095))

GPT3的参数量为175B,预测的loss值为LN(175*10**9),所需token数量为ld(LN(175*10**9))